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Abstract — One of the most common methods employed in the study of

wavegnides with irregular eleetric or magnetic walls is the finite element

approach. This method is based on the minimization of a functional, the

solution of which satisfies the boundary value problem. It is utilized in this

paper to stndy the elliptical gyromagnetic wavegoide with either an electric

or a magnetic wall. The functional for the fonr possible planar solutions

are separately summarized.

I. INTRODUCTION

T HE MODERN approach to the derivation of propa-

gation in inhomogeneous waveguides or in waveguides

with irregular cross sections is often based on the deriva-

tion of a functional and the use of the finite element

method [1], [2]. The functional encountered in gyromag-

netic waveguides with the direct field along the direction

of propagation has been developed in terms of the coupled

longitudinal electric (E: ) and magnetic ( Hz) fields entering

into the description of the coupled wave equations of this

type of problem [3]. Since the transverse fields may be

specified from a knowledge of the longitudinal ones, this

approach gives the complete solution to the problem. This

is in fact a common procedure in the study of waveguide

problems which support hybrid modes [4]–[8]. The func-

tional in the situation for which the direction of the direct

field makes an arbitrary angle with that of propagation has

been historically posed for the gyrotropic situation using a

three-component electric or magnetic field vector and in

terms of the transverse electric and magnetic fields [9],

[10]. If the direct field is parallel to that of the direction of

propagation, then Ez and HZ are coupled. If the direct

field and the direction of propagation are perpendicular to

each other, then Ez and H, are decoupled provided the

alternating fields do not vary along the direction of the

direct field. The functional for the first arrangement has

been tackled using the finite difference method [3] and that

for the second one using the finite element method [10],

[11]. The purpose of this paper is to investigate propaga-

tion along an elliptical gyromagnetic waveguide with elec-

tric or magnetic walls with the direct field parallel to that

of propagation using the finite element method. Fig. 1
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depicts the case of a longitudinally

waveguide with an electric wall.

magnetized elliptical

The required functional is a scalar quantity which may

be constructed by starting with a Rayleigh quotient [3],

[12] and expressing it as a quadratic form [4], [5], [ 13] or by

constructing the quadratic form directly from a knowledge

of the coupled or uncoupled wave equations [9], [14]–[16].

It is reproduced hereby directly constructing it in terms of

the properties of a quadratic form as a preamble to carry-

ing out some calculations. If the minimum of the func-

tional corresponds to the solution of the boundary value

problem then the final result is the energy functional of the

system. In such cases the quadratic form is understood to

be an energy function. While this approach gives the

classical result [3], the language is more akin to that met in

network rather than in electromagnetic theory [17]. There-

fore it may be more comprehensible to the nonspecialist

engineer. The solutions also correctly reduce to those met

frequently in thle description of the planar gyromagnetic

problems with electric and magnetic walls in all combina-

tions [18]–[20]. The cutoff space for this type of waveguide

has been dealt with separately in [20] and [21]. The finite

element method is currently being employed to analyze

lossy three-dimensional problems through a variational

approach [22]– [24] and by using alternative weighted

residual schemes [25], [26].

II. DERIVATION OF A FUNCTIONAL

The solution to irregular isotropic or gyromagnetic

waveguides is often solved by constructing a quadratic

form from a knowledge of the wave equation in either the

z-directed scalar [3]–[8] or the three-dimensional vector

[11] -[13], [16] form. It may be readily demonstrated that

all energy functions have the nature of a quadratic form

[17]. A property of any waveguide is that its field distribu-

tion in the transverse plane may always be formed from a

knowledge of E, and Hz. In a gyromagnetic waveguide

magnetized along the direction of propagation, E: and H,

are coupled. The classic derivation of the required func-

tional starts with the coupled wave equations

L,~Ez + L~hH, = O (la)

Lh,Ez -t LhhHz = O. (lb)
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Fig. 1. Schematic diagram of elliptical gyromagnetic waveguide with an
electric wall.

L ,,, L,h, Lb,, and Lhh are dependent upon the propaga-

tion constant, the frequency, the constitutive parameters,

and second-order linear derivatives. This system of equa-

tions may be written in matrix form as

(2)

The square matrix in this relationship is known as the

operator and is denoted by

(3)

An energy function can be associated with the square

matrix ~ and column vector

[1E=

Hz

by forming the related quadratic form

and by recognizing that all energy functions have this type

of form. If the quadratic form is greater than but not equal

to zero it is said to be positive definite (P.D.). If it is equal

to or greater than zero it is said to be positive semidefinite

(P. S.D.). In the case of a Iossless homogeneous gyromag-

netic waveguide the tensor permeability is Hermitian, and

a property of the matrix ~ of the quadratic form is that it

is self-adjoint. A necessary condition for the resulting

matrix eigenvalue problem to produce real eigenvalue fre-

quencies is that the quadratic form be P.S.D. This condi-

tion requires that the elements of the matrix ~ must

satisfy

Lhh >0 (4b)

(L,,Lhh - Ld,,,) 2 “. (4C)

An energy function of this type, once integrated over the

cross-sectional area of the waveguide, is referred to as the

functional of the system. This operation is usually written

This is given in integral form by

F(EZ, HZ)=
!!

E:L,,EZ ds +
u

Ez*L,hHz ds
.s .7

+
/./

Hz* LheEz ds +
//

Hz*LhhHz ds. (6)
3

$

In order to obtain a complete solution of the boundary

value problem it is necessary to minimize the quadratic

functional in conjunction with the boundary conditions of

the waveguide problem.

III. THE MATRIX OF THE FORM IN GYROMAGNETIC

WAVEGUIDES

The derivation starts by decomposing the electric and

magnetic fields (E and H) into transverse (Et, II,) and

longitudinal components (azEz, a ,Hz ). Adopting this no-

tation and assuming the time and z variation to be

exp ( jut )

exp ( – j/3z )

gives

E= (E, +azE=)exp( –j/3z)exp(j~t) (7)

H=(H, +azH=)exp( –j/3z)exp(jot). (8)

The constitutive parameters in a gyromagnetic waveguide

with the direction of the direct magnetic field along that of

propagation are given in terms of a tensor permeability

([p]) and a scalar permittivity (c) by

[“1

o

[PI=PO Jl ‘PJ’ “ (9)

o 0 p,

6 = CQcf
(lo)

respectively, where co and p,o denote the permittivit y and

permeability of free space.

The wave equations for E= and Hz are in this instance

coupled. The solution to this problem is a standard result

in the literature [27]. This gives the entries of the matrix of

the form as

L,, ‘V,2 – ~2 + k;p.rrff (ha)

(llb)

(lld)

where

k:=–fi2+k:pcf (12)
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and

J – K2

fJeff = —

P
(13a)

ko=; . (13b)
o

In this description of the matrix of the form each element

is a function of both ~ and k. to first and second order. It

is usual to recast it, for computational purposes, in terms

of the normalized propagation constant (~= /iI/ko) and

k; [3]. Using (llc) and (l Id) the coupled wave equation in

(lb) may be written as

and substituting it together with (ha) and (llb) into the

other coupled wave equation defined by (la) gives

(15a)

L;h = – jbv~. (15b)

Starting with the coupled wave equation (la) and making

use of the relationships in (ha) and (1 lb) gives

L;, = L~; (15C)

(1
L;h = Cvt2 + k;~ ‘0< Pz. (15d)

Ez and Hz are coupled through the imaginary term L~h,

which is nonzero for/3 and K nonzero. The quantities a, b,

c, d, e, and f are given in the Appendix.

IV. QUADRATIC FUNCTIONAL FOR A

GYROMAGNETIC REGION

The quadratic functional applicable to a finite space

region is readily deduced by combining (6) and (15). The

result is in terms of second-order linear derivatives. Inte-

grating this equation by parts and applying Green’s iden-

tity in a plane reduces it to one involving first-order linear

derivatives only. The products appearing in the quadratic

form then become

(16a)

(16b)

(16c)

(16d)

1001

In this derivation s is a closed surface, and the bound-

ary of s is a closed curve ~. The positive side of & is

defined to be that in which an observer would travel to

have the interior of s on the left side. ~ is the unit vector

tangent to & in the positive direction. n is the outward unit

vector normal to s.

V. ELLIPTICAL WAVEGUIDE WIT’H AN ELECTRIC WALL

The boundary conditions in the electric wall problem

E(=O

EZ=O

are applied to the tangential electric field Eg:

8E= 8E, dH, dHz
Et=–jf—+b%–d— —

d( arg ‘Jc dn

to give the required boundary equation as [28]

ilEq dHz 8HZ

b:~–dz–
—=0.

‘c dn

(17a)

(17b)

(17C)

(17d)

Introducing this boundary equation into the functional for

the finite gyromlagnetic region and making use of the

following relationship between the coupled variables,

j//vtE,” .v,H. - (v, E,* .v,H, )’ ds
s

—— –2//V,E.W,Hzds (18)$

gives the required form of the functional for a longitudi-

nally gyromagnetic waveguide with an electric wall:

(19)

The electromagnetic field solution may be obtained from

the stationary condition of the functional. Adopting the

Rayleigh–Ritz minimization method yields the following

matrix eigenvalue equation:

“, L A
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TE,,

Fig. 2. Comparison between exact and finite element method of the
propagation constants of the TE + ~ * mode in a gyromagnetic circular
wavegukle with an electric wall (10 R = 0.6, P =1, P, =1, ef = 15).

for a waveguide of general cross section bounded by an

electric wall. This quantity differs from the isotropic for-

mulation in the coupling terms [4]–[8]. It is of note that the

imaginary skew-symmetric part of the Hermitian matrix

only makes a contribution to the real part of the Hermitian

form, and the resultant form is therefore real and will

produce real eigenfrequencies. [S] and [T] are real, sym-

metric square matrices [2]:

(21a)

(21b)

and the imaginary skew-symmetric square matrix [C] is

given by [18]

(21C)

Here a, ~ are a set of linearly independent real basis

functions. The constitutive parameters and ~ are inputs to

the finite element program; k; is the calculated eigen-

value. From a knowledge of the relationship between ~
and kO over a range of K values, it is possible to plot F

versus K diagrams.

Fig. 2 illustrates the agreement between the exact and

finite element solutions in the case of a round waveguide.

Fig. 3 depicts the phase constants for an elliptical gyro-

magnetic waveguide. The segmentation employed here

consists of 15 third-order elements. This is indicated in

Fig. 4.

VI. ELLIPTICAL WAVEGUIDE WITH MAGNETIC WALLS

The boundary conditions relating to a waveguide with a

magnetic wall surface,

H(=O (22a)

HZ=O (22b)

47

2

I_

0.5
K 1:0

T

Fig. 3. Comparison between exact and fimte element method of the
propagation constants of the ,TEI, ~ and ~TEl,l modes in an elliptical
gyromagnetic wavegulde with an electric wall ( kOR = 0.9696, p =1,

k =1, ~f =10, e = 0.640

Fig. 4. Segmentation of an elliptical cross section into 15 third-order
trrangles.

reduce the expression for the tangential magnetic field,

to the following boundary equation:

aHz aEz aEz
b— —

an
—=0.

‘eat ‘Jadn
(22d)

Once again making use of the relationship between the

coupled variables (18), the functional for the magnetic wall

waveguide is obtained as

(23)

The Rayleigh–Ritz minimization of this functional gives
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Fig. 5. Comparison between exact and finite element method of the
propagation constants of the TM ~ ~,1mode in a circular gyromagnetic
waveguide with a magnetic wall (kO R = 0.6, p =1, ~, =1, Cf = 15).

the matrix eigenvalue equation as

Fig. 5 compares the finite element solution and the exact

one for a circular gyromagnetic waveguide with a magnetic

wall. Fig. 6 indicates one result in the case of an elliptical

waveguide. This solution is compatible with the approxi-

mate phase constants deduced from the split frequencies of

a planar circuit with magnetic sidewalls and top and

bottom electric walls [20].

VII. FUNCTIONAL FOR PLANAR GYROMAGNETIC

I&SONATORS

The cutoff plane of the gyromagnetic waveguide prob-

lem with an electric sidewall may be constructed by mini-

mizing the functional of the related planar geometries

with either magnetic or electric top and bottom walls

together with a knowledge of the rules governing mode

nomenclature [29]–[31]. The functional for the transverse

electric (TE) modes of a planar circuit with top and

bottom magnetic walls is obtained by letting

fl=() (25a)

EZ=O (25b)

in (19). This gives

F(HZ) = – ~~lV,H=12 ds + ‘:~fp .jjjffzl’ds- (’6)
s s

The functional associated with the transverse magnetic

(TM) modes of the planar resonator bounded by an elec-

5

4

D
To

3

2

1

0

,TM1 ,

0.5 1.0
+

Fig, 6. Compamon between perturbation theory and the finite element
method of the propagation constants of the .TMI, ~ and .TMI, ~ modes
in an elliptical gyromagnetic waveguide with a magnetic wall ( kOR =
().6, p=l, p, =1,(,=15, e=0.4).

tric sidewall ancl top and bottom electric walls is derived

by letting

fl=() (27a)

H,=O (27b)

in (19). The result is

These functional, (26) and (28), have been used in [20] to

construct the cutoff space of elliptical gyromagnetic wave-

guides with electric walls.

The functional for the planar circuit with a magnetic

sidewall may also be obtained from the related functional

for the magneti{~ wall waveguide. The conditions for elec-

tric top and bottom walls, stated in (27), reduce the

functional in (23) to the following:

i3E=
F’(E=) = – ~/lv,E=12ds + j;/’~— dl

s a.g

//
+ k;~~pe,f lEzl’ ds. (29)

s

This is exactly the result given in [18] and [19] and may be

used to deal with the planar gyromagnetic problem. The

imaginary part of (29) results in split cutoff numbers for

the TM modes of this waveguide.

Similarly the conditions for magnetic top and bottom

walls, stated in (25), applied to (23) yield the functional for

the planar geometry with magnetic side, and top and
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bottom walls as

F(HZ) = – JJjv,Hz12ds + k:tfpz~j!ms. (30)
s s

This functional is identical to that in (26) but the solution

to this problem requires that the functional be minimized

in conjunction with the boundary condition that H: is zero

on the magnetic sidewall.

The functional given by (29) and (30) may be used to

construct the TM and TE modes respectively in the cutoff

plane of the related gyromagnetic waveguide problem with

a magnetic wall [20].

VIII. CONCLUSION

The classic method employed to derive a functional is to

construct a quadratic form, by premultiplying the wave

equation by the conjugate field, and then to integrate this

quantity over the cross section of the problem region. This

procedure has been utilized in this paper to construct a

solution of the longitudinally magnetized gyromagnetic

problem using the z-directed coupled wave equations. It

has been used in conjunction with the finite element

method to evaluate the propagation constants of an ellipti-

cal gyromagnetic waveguide with either an electric or a

magnetic wall. The well-known functional associated with

the four possible planar circuits made up of electric and

magnetic side and top and bottom walls are directly ob-

tained from those of the related waveguide problems.

APPENDIX

The coefficients met in the text are defined below:
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