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Finmite Element Solution of Longitudinally
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Waveguides
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Abstract —One of the most common methods employed in the study of
waveguides with irregular electric or magnetic walls is the finite element
approach. This method is based on the minimization of a functional, the
solution of which satisfies the boundary value problem. It is utilized in this
paper to study the elliptical gyromagnetic waveguide with either an electric
or a magnetic wall. The functionals for the four possible planar solutions
are separately summarized.

I. INTRODUCTION

HE MODERN approach to the derivation of propa-

gation in inhomogeneous waveguides or in waveguides
with irregular cross sections is often based on the deriva-
tion of a functional and the use of the finite element
method [1], [2]. The functional encountered in gyromag-
netic waveguides with the direct field along the direction
of propagation has been developed in terms of the coupled
longitudinal electric ( E,) and magnetic ( H,) fields entering
into the description of the coupled wave equations of this
type of problem [3]. Since the transverse fields may be
specified from a knowledge of the longitudinal ones, this
approach gives the complete solution to the problem. This
is in fact a common procedure in the study of waveguide
problems which support hybrid modes [4]-[8]. The func-
tional in the situation for which the direction of the direct
field makes an arbitrary angle with that of propagation has
been historically posed for the gyrotropic situation using a
three-component electric or magnetic field vector and in
terms of the transverse electric and magnetic fields [9],
[10]. If the direct field is parallel to that of the direction of
propagation, then E, and H, are coupled. If the direct
field and the direction of propagation are perpendicular to
each other, then E, and H, are decoupled provided the
alternating fields do not vary along the direction of the
direct field. The functional for the first arrangement has
been tackled using the finite difference method [3] and that
for the second one using the finite element method [10],
f11]. The purpose of this paper is to investigate propaga-
tion along an elliptical gyromagnetic waveguide with elec-
tric or magnetic walls with the direct field parallel to that
of propagation using the finite element method. Fig. 1
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depicts the case of a longitudinally magnetized elliptical
waveguide with an electric wall.

The required functional is a scalar quantity which may
be constructed by starting with a Rayleigh quotient [3],
[12] and expressing it as a quadratic form [4], [S], [13] or by
constructing the quadratic form directly from a knowledge
of the coupled or uncoupled wave equations [9], [14]-[16].
It is reproduced here by directly constructing it in terms of
the properties of a quadratic form as a preamble to carry-
ing out some calculations. If the minimum of the func-
tional corresponds to the solution of the boundary value
problem then the final result is the energy functional of the
system. In such cases the quadratic form is understood to
be an energy function. While this approach gives the
classical result [3], the language is more akin to that met in
network rather than in electromagnetic theory [17]. There-
fore it may be more comprehensible to the nonspecialist
engineer. The solutions also correctly reduce to those met
frequently in the description of the planar gyromagnetic
problems with electric and magnetic walls in all combina-
tions [18]-[20]. The cutoff space for this type of waveguide
has been dealt with separately in [20] and [21]. The finite
element method is currently being employed to analyze
lossy three-dimensional problems through a variational
approach [22]-[24] and by using alternative weighted
residual schemes [25], [26].

II. DERIVATION OF A FUNCTIONAL

The solution to irregular isotropic or gyromagnetic
waveguides is often solved by constructing a quadratic
form from a knowledge of the wave equation in either the
z-directed scalar [3]-[8] or the three-dimensional vector
[11]-[13], [16] form. It may be readily demonstrated that
all energy functions have the nature of a quadratic form
[17]. A property of any waveguide is that its field distribu-
tion in the transverse plane may always be formed from a
knowledge of E, and H,. In a gyromagnetic waveguide
magnetized along the direction of propagation, E, and H,
are coupled. The classic derivation of the required func-
tional starts with the coupled wave equations

L .E +L,H,=0 (1a)

L,.E (1b)

he™z

+ L, H,=0.
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Fig. 1. Schematic diagram of elliptical gyromagnetic waveguide with an
electric wall.
L., L,, L,, and L,, are dependent upon the propaga-

tion constant, the frequency, the constitutive parameters,
and second-order linear derivatives. This system of equa-
tions may be written in matrix form as

Lee Leh EZ '
[Lhe thHHj = 0]

The square matrix in this relationship is known as the
operator and is denoted by

Leh:l

Lyn}

T [Lee
L=
Lhe
An energy function can be associated with the square
matrix L and column vector

2)

(3)

by forming the related quadratic form

ol i

z z Lhe

and by recognizing that all energy functions have this type
of form. If the quadratic form is greater than but not equal
to zero it is said to be positive definite (P.D.). If it is equal
to or greater than zero it 1s said to be positive semidefinite
(P.8.D.). In the case of a lossless homogeneous gyromag-
netic waveguide the tensor permeability is Hermitian, and
a property of the matrix L of the quadratic form is that it
is self-adjoint. A necessary condition for the resulting
matrix eigenvalue problem to produce real eigenvalue fre-
quencies is that the quadratic form be P.S.D. This condi-
tion requires that the elements of the matrix L must
satisfy

=0

ee

(4a)
(4b)
(4c)

An energy function of this type, once integrated over the
cross-sectional area of the waveguide, is referred to as the
functional of the system. This operation is usually written

L >
L,,>0

(Leeth - Lethe) > 0.
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as

rem-([G G Bl o

This is given in integral form by
F(E,L H)=||E*L E ds+ ||EXL,,H. ds
(£, 1) = [[ J[EzLa8,

+ [[HrL, B ds+ [[HrL,,H ds. (6)
s s

In order to obtain a complete solution of the boundary
value problem it is necessary to minimize the quadratic
functional in conjunction with the boundary conditions of .
the waveguide problem.

III. TeHE MATRIX OF THE FORM IN GYROMAGNETIC
WAVEGUIDES

The derivation starts by decomposing the electric and
magnetic fields (£ and H) into transverse (E,, H,) and
longitudinal components (a,E,, a,H,). Adopting this no-
tation and assuming the time and z variation to be

exp (jwr)
exp(— jbz)
gives
E=(E,+a.E,)exp(— jBz)exp(jwr) (7)
H=(H+aH,)exp(— jBz)exp(jut).  (8)

The constitutive parameters in a gyromagnetic waveguide
with the direction of the direct magnetic field along that of
propagation are given in terms of a tensor permeability
({p]) and a scalar permittivity (e) by

poo—je 0

Wl =ik 0 0 ©)
0 0 ©,

€=, (10)

respectively, where ¢, and p, denote the permittivity and
permeability of free space.

The wave equations for E, and H, are in this instance
coupled. The solution to this problem is a standard result
in the literature [27]. This gives the entries of the matrix of
the form as

Lee:vtz_lgz—}_kénu‘effef (113)
. IJ‘O BkOK:u‘z
La= i %] (11b)
€o o
Ly, =L}, (11c)
Pokt, kip,
Ly = — 2y 2 (11d)
€€ s o
where
ki=—B*+ kine, (12)



GIBSON AND HELSZAJN: FINITE ELEMENT SOLUTION

and

2 2

Bk
Mg (133)

®
20

— 13b
0 A() ( )

In this description of the matrix of the form each element
is a function of both 8 and k, to first and second order. It
is usual to recast it, for computational purposes, in terms
of the normalized propagation constant (8= 8/k,) and
k2 [3]. Using (11c) and (11d) the coupled wave equation in
(1b) may be written as

€o B"koff B
Ho/ M 1 .“

and substituting it together with (11a) and (11b) into the
other coupled wave equation defined by (1a) gives

; V/H, (14)

L, =av}+ kS‘/( fﬂ)ef (15a)
)

La=— JbV 2. (15b)

Starting with the coupled wave equation (1a) and making

use of the relationships in (11a) and (11b) gives
Lj.= Ly

to
L,=cv/} +k§\/< ) B,
€0

E, and H, are coupled through the imaginary term L.,,
which is nonzero for B and k nonzero. The quantities a, b,
¢, d, e, and f are given in the Appendix.

(15¢)
(15d)

IV. QuaprATIC FUNCTIONAL FOR A
GYROMAGNETIC REGION

The quadratic functional applicable to a finite space
region is readily deduced by combining (6) and (15). The
result is in terms of second-order linear derivatives. Inte-
grating this equation by parts and applying Green’s iden-
tity in a plane reduces it to one involving first-order linear
derivatives only. The products appearing in the quadratic
form then become

ffE *L! E,ds=— afﬂv,E:Pds + asz* aaE dl

+ k3 )€fff‘E‘ s (162
[[Erviabiem o ffo 5w, e M
(16b)
J f H*Ly E ds =~ jb [ fsVer* VE.ds jbngz* aai o
(16¢)
/ szz* LijHds=—c| f v, H,|? ds + Cngf* aff a
+ k3 )”ZfﬂH' ds. (162)
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In this derivation s is a closed surface, and the bound-
ary of s is a closed curve & The positive side of § is
defined to be that in which an observer would travel to
have the interior of s on the left side. € is the unit vector
tangent to £ in the positive direction. # is the outward unit
vector normal to s.

V. ELLipTICAL WAVEGUIDE WITH AN ELECTRIC WALL

The boundary conditions in the electric wall problem

E =0 (17v)
are applied to the tangential electric field Ej:
E - faE: JE, s oH. 0H, .
Hg thgy —dmy e, (179
to give the required boundary equation as [28]
) JE, 0H,  JH, 74
In 0§ n (174)

Introducing this boundary equation into the functional for
the finite gyromagnetic region and making use of the
following relationship between the coupled variables,

w5

- (v, E} v, H,)*ds

=2f[vE-vH.ds (18)

gives the required form of the functional for a longitudi-
nally gyromagnetic waveguide with an electric wall:

F(E,,H) =~ af/|v,E:|2ds + k(z)‘/(;—o)cff/|E2|2ds
s 0 s

~2b [[,E,,H,ds
5

- cffslV,HZPds + jdng_,* 88? dl

2 [ Mo
+k5¢(—E ),U.f \H,|* ds.
0 s

The electromagnetic field solution may be obtained from
the stationary condition of the functional. Adopting the
Rayleigh~Ritz minimization method yields the following

matrix eigenvalue equation:
]
[C1]LP7

a[S] b[S]|]e: | 10]
{ c[slnhz]‘fdlm]

(19)

bS]
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Fig. 2. Comparison between exact and finite element method of the
propagation constants of the TE , ; ; mode in a gyromagnetic circular
waveguide with an electric wall (kgR=0.6, p=1, p. =1, ¢, =15).

for a waveguide of general cross section bounded by an
electric wall. This quantity differs from the isotropic for-
mulation in the coupling terms [4]-[&]. It is of note that the
imaginary skew-symmetric part of the Hermitian matrix
only makes a contribution to the real part of the Hermitian
form, and the resultant form is therefore real and will
produce real eigenfrequencies. [S] and [T'] are real, sym-
metric square matrices [2]:

S, =/fv,al "V, ds
5

TI,J=/falajds
N

and the imaginary skew-symmetric square matrix [C] is
given by [18]

(21a)

(21b)

de, ’

c,, /g.a, s (21c)

Here a, , are a set of linearly independent real basis

functions. The constitutive parameters and 8 are inputs to

the finite element program; k; is the calculated eigen-

value. From a knowledge of the relationship between E

and k, over a range of k values, it is possible to plot 8
versus k diagrams.

Fig. 2 illustrates the agreement between the exact and
finite element solutions in the case of a round waveguide.
Fig. 3 depicts the phase constants for an elliptical gyro-
magnetic waveguide. The segmentation employed here
consists of 15 third-order elements. This is indicated in
Fig. 4.

VI. ELrLipTICAL WAVEGUIDE WITH MAGNETIC WALLS

The boundary conditions relating to a waveguide with a
magnetic wall surface,

(22a)
(22b)
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Fig. 3. Comparison between exact and finite element method of the
propagation constants of the TE, ; and ,TE; ; modes in an elliptical
gyromagnetic waveguide with an electric wall (kqR =0.9696, p =1,
w, =1, € =10, e = 0.643).

Vs

Fig. 4. Segmentation of an elliptical cross section into 15 third-order
triangles.

L

reduce the expression for the tangential magnetic field,

JE, JE, dH, JH,
H£=eé}s +ja_ﬁ_jfa§ +b—5n— (22¢)
to the following boundary equation:
JdH, JE, aE,
b—a7+ea*£+ja—a;*=0. (22d)

Once again making use of the relationship between the
coupled variables (18), the functional for the magnetic wall
waveguide is obtained as

JdE

~ dl
asd

F(E, H,)=-a[[lv,Eds+ jefSEz*
+k§‘/(i%)eff/s|E:]2ds
~2b [ [v,E,~v H,ds - ¢[fiv.m 2 ds

’:-(‘)’)uszsszizds.

The Rayleigh—Ritz minimization of this functional gives

+kgy (23)
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Fig. 5. Comparison between exact and finite element method of the
propagation constants of the TM , , | mode in a circular gyromagnetic
waveguide with a magnetic wall (kR = 0.6, p=1, g, =1, ¢, =15).

the matrix eigenvalue equation as
[a[S] b[s]“ez}_je{[c] [O]Hez]
c[S] {L%: [0] [0]|L%:

b[S]
€
g L0 B ) B
—k2f 0 . [ hz]. (24)
) z
DR ESTAE
€
Fig. 5 compares the finite element solution and the exact
one for a circular gyromagnetic waveguide with a magnetic
wall. Fig. 6 indicates one result in the case of an elliptical
waveguide. This solution is compatible with the approxi-
mate phase constants deduced from the split frequencies of
a planar circuit with magnetic sidewalls and top and

bottom electric walls [20].

VII. FUNCTIONALS FOR PLANAR GYROMAGNETIC

RESONATORS

The cutoff plane of the gyromagnetic waveguide prob-
lem with an electric sidewall may be constructed by mini-
mizing the functionals of the related planar geometries
with either magnetic or electric top and bottom walls
together with a knowledge of the rules governing mode
nomenclature [29]1-[31]. The functional for the transverse
electric (TE) modes of a planar circuit with top and
bottom magnetic walls is obtained by letting

B=0
E,=0

(25a)
(25b)
in (19). This gives

F(H,) =~ [[1v,H,]2ds + ke, [ [\H? ds. (26)

The functional associated with the transverse magnetic
(TM) modes of the planar resonator bounded by an elec-
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Fig. 6. Comparison between perturbation theory and the finite element
method of the propagation constants of the ,TM,; ; and ;TM; ; modes
in an elliptical gyromagnetic waveguide with a magnetic wall (k R=
0.6, p=1, p. =1, ¢, =15, e =0.4).

tric sidewall and top and bottom electric walls is derived
by letting

(27a)
(27b)

B=0
H.=0

in (19). The result is

F(E,) = —fﬁv,E |2ds+k0€fpefff/jEzlzdS. (28)

These functionals, (26) and (28), have been used in [20] to
construct the cutoff space of elliptical gyromagnetic wave-
guides with electric walls.

The functional for the planar circuit with a magnetic
sidewall may also be obtained from the related functional
for the magnetic wall waveguide. The conditions for elec-
tric top and bottom walls, stated in (27), reduce the
functional in (23) to the following;:

F(E)=- fﬂv,Ezlzds + ]ELE* a;;z dl

+ ke [ [\ EP ds. (29)

This is exactly the result given in [18] and [19] and may be
used to deal with the planar gyromagnetic problem. The
imaginary part of (29) results in split cutoff numbers for
the TM modes of this waveguide.

Similarly the conditions for magnetic top and bottom
walls, stated in (25), applied to (23) yield the functional for
the planar geometry with magnetic side, and top and
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bottom walls as

F(H) =~ [[iv.H)2ds + ke, [ [|H2ds. (30)

This functional is identical to that in (26) but the solution
to this problem requires that the functional be minimized
in conjunction with the boundary condition that H. is zero
on the magnetic sidewall.

The functionals given by (29) and (30) may be used to
construct the TM and TE modes respectively in the cutoff
plane of the related gyromagnetic waveguide problem with
a magnetic wall [20].

VIIL

The classic method employed to derive a functional is to
construct a quadratic form, by premultiplying the wave
equation by the conjugate field, and then to integrate this
quantity over the cross section of the problem region. This
procedure has been utilized in this paper to construct a
solution of the longitudinally magnetized gyromagnetic
problem using the z-directed coupled wave equations. It
has been used in conjunction with the finite element
method to evaluate the propagation constants of an ellipti-
cal gyromagnetic waveguide with either an electric or a
magnetic wall. The well-known functionals associated with
the four possible planar circuits made up of electric and
magnetic side and top and bottom walls are directly ob-
tained from those of the related waveguide problems.

CONCLUSION

APPENDIX
The coefficients met in the text are defined below:
<50) (e —B%)
a=¢/{ — T2 22
o) [Br=¢,(n+0)][B*—¢(n—n)]
b= _ EfK[?_
[Bz_ff(li“‘")][ﬁz—f/(ﬂ"‘)]
o= (@) _ (eﬂu'eff—gz)
e | B = (n+0)][B =, (p—1)]

_ (R B
d"“( eo) (B2 =€, (n+x)][ B>~ ¢, (1 ~x)]
_6_0 E%K
‘ “(uo)[Ez—ef(mx)][EZ—ef(u—x)]
f= E(‘f”"gz)
[B> = (p+0)][B>=ep(n—x)]
B+
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